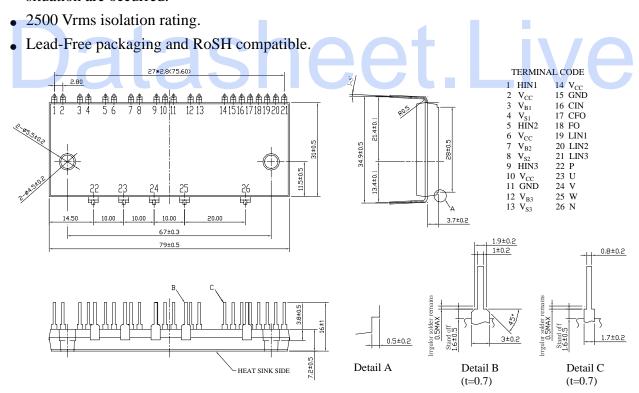
CCyntec

LDIP-IPM IM14400

Description


Cyntec IPM is integrated Drive, protection and system control functions that is designed for high performance 3-phase motor driver application like:

- Home appliances applications.
- Inverter drive parts for AC/DC motor driving.

Features

- UL Certified No.E204652.
- Lower switching loss and higher short-circuit withstanding capability.
- Under-voltage lockout protection.
- Using copper as the heat-sink to withstand the power semiconductor to get the lower thermal resistance.
- Matched propagation delay for three arms to get balance switching performance.
- Provided a fault signal (FO pin) and shut-off internal IGBT, when OC/SC and under-voltage situation are occurred.

UNLESS OTHERWISE SPECIFIED	DRAWN BY	:	CYNTE	C CO., LTD.			
TOLERQNCES ON : X = ±	DESIGNED BY	:		.0 001, 2121			
$X = \pm X$	CHECKED BY	:					
$X.XX = \pm$	APPROVED BY	:	THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD. AND SHALL NOT BE REPRODUCED OR USED AS THE BASIS FOR THE				
ANGLES ± HOLE DIA. ±	SCALE : X	UNIT : X		ARATUS OR DEVICES WITHOUT PER			
TITLE: ENGINEERING SPEC	C OE L DID IDM 6	2001/ 304	DOCUMENT	MM14400008	PAGE REV.		
ITTLE. ENGINEERING SPEC	J. OF LUIP IPIVI 6	00V 30A	l NO.	10110114400006	A1		

Figure 1. Package Outlines

Table1: Pin Descriptions

No.	Symbol	Pin Description
1	HIN1	Signal Input Terminal for High-side U Phase
2	V_{CC}	Supply Voltage Terminal for Driver IC
3	V_{B1}	High -side Bias Voltage for U Phase IGBT Driving
4	V_{S1}	High -side Bias Voltage Ground for U Phase IGBT Driving
5	HIN2	Signal Input Terminal for High-side V Phase
6	V_{CC}	Supply Voltage Terminal for Driver IC
7	V_{B2}	High -side Bias Voltage for V Phase IGBT Driving
8	V_{S2}	High -side Bias Voltage Ground for V Phase IGBT Driving
9	HIN3	Signal Input Terminal for High-side W Phase
10	V_{CC}	Supply Voltage Terminal for Driver IC
11	GND	Signal Ground
12	V_{B3}	High -side Bias Voltage for W Phase IGBT Driving
13	V_{S3}	High -side Bias Voltage Ground for W Phase IGBT Driving
14	V_{CC}	Supply Voltage Terminal for Driver IC
15	GND	Signal Ground
16	CIN	Comparator Input
17	CFO	Capacitor for Fault Output Duration Time Selection
18	FO	Fault Output Terminal
19	LIN1	Signal Input Terminal for Low-side U Phase
20	LIN2	Signal Input Terminal for Low-side V Phase
21	LIN3	Signal Input Terminal for Low-side W Phase
22	P	Positive DC-Bus Input Terminal
23	U	Output Terminal for U Phase
24	V	Output Terminal for V Phase
25	W	Output Terminal for W Phase
26	N	Negative DC-Bus Input Terminal

UNLESS OTHERWISE SPECIFIED	DRAWN BY	:	CYNTE	EC CO., LTD.			
TOLERQNCES ON: X = ±	DESIGNED BY	:					
$\begin{array}{ccc} \lambda & = \pm \\ X.X & = \pm \end{array}$	CHECKED BY	:					
$X.XX = \pm$	APPROVED BY:		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD.				
ANGLES ± HOLE DIA. ±	SCALE : X	UNIT : X	AND SHALL NOT BE REPRODUCED OR USED AS THE BASIS FOR THE MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION				
TITLE: ENGINEERING SPEC	C. OF LDIP IPM (600V 30A	DOCUMENT NO.	MM14400008	PAGE REV.		

CCyntec

LDIP-IPM Internal Block Diagram

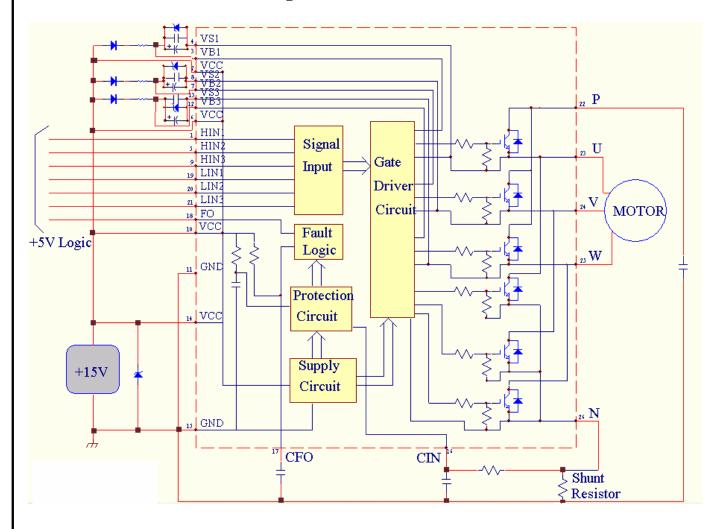


Figure. 2 LDIP-IPM Internal Block Diagram

UNLESS OTHERWISE SPECIFIED TOLERQNCES ON: X = ±	DRAWN BY DESIGNED BY CHECKED BY	:	CYNTE	EC CO., LTD.	
$ \begin{array}{lll} X.X & = \pm \\ X.XX & = \pm \end{array} $	APPROVED BY:		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTI		
ANGLES ± HOLE DIA. ±	SCALE : X	UNIT : X	MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISS		MISSION
TITLE: ENGINEERING SPEC	C. OF LDIP IPM 6	00V 30A	DOCUMENT NO.	MM14400008	PAGE REV.

MAXIMUM RATINGS $(T_j = 25^{\circ}C)$ **INVERTER PART**

Item	Symbol	Min.	Max.	Unit
Between collector to emitter voltage	V_{CES}	-	600	V
Supply voltage P-N	V_{PN}	-	450	V
Supply voltage (surge) P-N	V _{PN (surge)}	-	500	V
Each IGBT collector current	\pm I _C (Tc = 25°C)	-	30	A
Each IGBT collector current (peak)	\pm I _{CP} (Tc = 25°C , pulse)	-	60	A
Collector dissipation	P_C (Tc = 25°C, per one chip)	-	103	W
Junction temperature	T j (Note 1)	-20	+125	$^{\circ}\mathbb{C}$

Note 1: The maximum junction temperature rating of the power chip integrated within the IPM is 150°C (@ Tc ≤ 100 °C). However, It would be recommended that the average junction temperature should be limited to $T_j \leq ~125^{\circ}C$ (@ $Tc~\leq~100^{\circ}C$) in order to guarantee safe operation.

CONTROL PART

Item	Symbol	Min.	Max.	Unit
Driver IC supply voltage	V_{CC}	-0.3	20	V
P- side floating supply voltage	V _{B1S1,B2S2,B3S3}	-0.3	20	V
Current sensing input voltage	V_{CIN}	-0.3	Vcc+0.3	V
Logic input voltage	HIN1,HIN2,HIN3, LIN1,LIN2,LIN3	-0.3	5.5	V
Fault output voltage	V_{FO}	-0.3	Vcc+0.3	V
Fault output current	I_{FO}	-	10	mA

TOTAL SYSTEM

Item	S	ymbol	Min.	Max.	Unit
Module case operating temperature	T_{C}	(Note 2)	-20	+100	$^{\circ}$
Storage temperature	T_{stg}		-40	+125	$^{\circ}$
Isolation voltage (60Hz Sinusoidal, AC 1 min., pins to heat-sink plate)	V _{iso}		-	2500	Vrms

Note 2 : Tc Measurement Point.

Control Terminals

Heat sink boundary H

Power Terminals

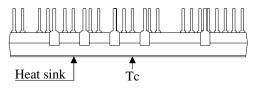


Figure.3 Tc measurement point

UNLESS OTHERWISE SPECIFIED	DRAWN BY	:	CYNTEC CO., LTD.				
TOLERQNCES ON:	DESIGNED BY	:					
$\begin{array}{ccc} X & = \pm \\ X.X & = \pm \end{array}$	CHECKED BY	:	7				
$X.XX = \pm$	APPROVED BY	' :	THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD.				
ANGLES ± HOLE DIA. ±	OLE DIA. ± SCALE: X UNIT: X AND SHALL NOT BE REPRODUCED OR USED AS THE BA MANUFACTURE OR SALE OF APPARATUS OR DEVICES W						
TITLE: ENGINEERING SPEC, OF LDIP IPM 600V 30A		DOCUMENT	MM14400008	PAGE REV.			
I TILL. LINGINEERING SPEC	J. OI LDIF IFINI	JUU V JUA	NO.	10110114400000	A1		

ELECTRICAL CHARACTERISTICS $(T_j = 25^{\circ}C)$ INVERTER PART

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Collector-emitter saturation voltage	V _{CE (sat)}	$V_{CC}=V_{B1S1,B2S2,B3S3}=15V,$ $I_{C}=30A, V_{CIN}=0V, T_{j}=25^{\circ}C$	-	2.60	3.10	V
FWD forward voltage drop	V_{F}	$T_j = 25^{\circ}\text{C}$, - $I_C = 30\text{A}$, $V_{CIN} = 5\text{V}$	-	1.90	2.40	V
	T_{on}	$V_{D} = 300 V$,	-	0.73	1.10	
Cwitching times	T_r	$V_{CC}=V_{B1S1,B2S2,B3S3}=15V,$	-	0.17	0.21] ,,,
Switching times	$T_{ m off}$	$I_C=30A, T_j=25^{\circ}C,$ $V_{HIN}=5V<\longrightarrow 0V,$	-	0.90	1.20	μ S
	$T_{\rm f}$	V _{CIN} = 0V, inductive Load	-	0.07	0.30	
Collector-emitter cut-off current	I_{CES}	$V_{\text{CE}} = V_{\text{CES}}$	-	-	0.09	mA

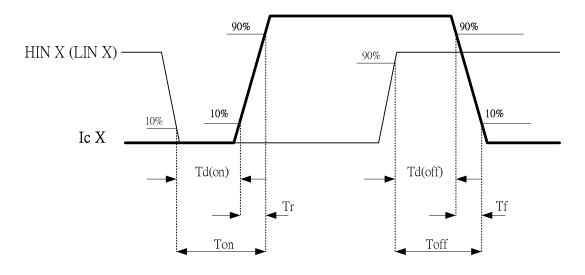
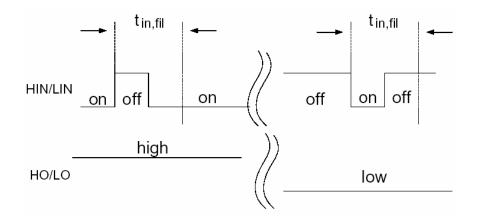


Figure.4 Switching time define

UNLESS OTHERWISE SPECIFIED	DRAWN BY	:	CYNTE	C CO., LTD.			
TOLERQNCES ON:	DESIGNED BY	:					
$\begin{array}{ccc} X & = \pm \\ X.X & = \pm \end{array}$	CHECKED BY	:					
$X.XX = \pm$ APPROVED BY:		' :	THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD.				
ANGLES ± HOLE DIA. ±	± HOLE DIA. ± SCALE : X UNIT : X AND SHALL NOT BE REPRODUCED OR USED AS THE BAS MANUFACTURE OR SALE OF APPARATUS OR DEVICES WI						
TITLE: ENGINEERING SPEC. OF LDIP IPM 600V 30A		DOCUMENT	MM14400008	PAGE REV.			
1 22. 2.131112211110 01 21	5. 5. LDII II W C	200 V 007 C	NO.	1011011 7-700000	A1		


CONTROL PART $(T_j = 25^{\circ}C)$

Item	Symbol	Condition		Min.	Тур.	Max.	Unit
HIN1,2,3 , LIN1,2,3 ON threshold voltage	$V_{\text{th(on)}}$			1.4	1.7	2.0	V
HIN1,2,3 , LIN1,2,3 OFF threshold voltage	$V_{\text{th(off)}}$			2.2	2.5	2.8	V
HIN1 2.3 input current	$I_{HIN(HI)}$	$V_{\rm HIN1,2,3} = 5V$		-	-	220	μΑ
mpat carrent	$I_{HIN(LO)}$	$V_{HIN1,2,3} = 0V$		-	-	300	μ11
LINI 2.2 immet mannet	$I_{LIN(HI)}$	$V_{LIN1,2,3} = 5V$		-	-	220	4
LIN1,2,3 input current	_	$V_{LIN1,2,3} = 0V$		-	-	300	μ A
Driver IC supply voltage	V_{CC}			13.5	15.0	16.5	V
P- side floating supply voltage	$V_{B1S1,B2S2,B3S3}$			13.5	15.0	16.5	V
V _{CC} terminal input current	I_{C}			-	-	2.3	mA
Fault output voltage	V_{FOH}	$V_{CIN}=0V$ (New	ote 3)	4.9	-	-	V
raun output voltage	V_{FOL}	$V_{CIN}=1V$ (No.	ote 3)	-	-	200	mV
Short circuit trip level	V _{SC(ref)}	$V_{CC}=15V$, $T_j=25^{\circ}C$		0.37	0.46	0.55	V
Fault output pulse width	t_{FO}	$C_{FO} = 22nF \sim 33nF$ (No	ote 4)	1.0	1.8	-	ms
Supply airquit under voltage	UVT _{VCC}	Trip level		10.4	10.9	11.4	V
11 0	UVR _{VCC}	Reset level		10.6	11.1	11.6	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hysteresis			0.2	-	V	
HIN,LIN Input filter time	t _{IN,FIL}	VIN = 0 & 5 V (N	Note 5)	100	200	-	ns

Note 3: FO output is open collector type, so this signal line should be pulled up to the +5V power supply with approximately $5.1K\Omega$.

Note 4: C_{FO} need to adjust if output can not fit 1.8 ms demand.

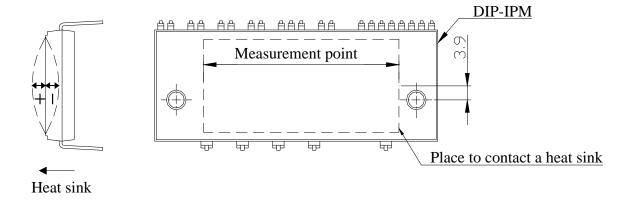
Note 5: For high side PWM, HIN pulse width must be $\geq 1 \mu \text{ sec.}$

THERMAL RESISTANCE

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Junction to case thermal	$R_{th(j-c)Q}$	IGBT part (1/6)	ı		0.97	
resistance	$R_{th(j-c)F}$	FWD part (1/6)	ı		1.47	°C/W
Case to fin thermal resistance	R _{th(c-f)}	Case to W pin	-		0.03	(/ W

UNLESS OTHERWISE SPECIFIED TOLERQNCES ON:	DRAWN BY		CYNTEC CO., LTD.		
X = ±	DESIGNED BY:				
$\begin{array}{ccc} \lambda & = \pm \\ X.X & = \pm \end{array}$	CHECKED BY	:			
$X.XX = \pm$	APPROVED BY:		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD. AND SHALL NOT BE REPRODUCED OR USED AS THE BASIS FOR THE		
ANGLES ± HOLE DIA. ±	SCALE : X	UNIT : X	MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION		
TITLE: ENGINEERING SPEC. OF LDIP IPM 600V 30A			DOCUMENT NO.	MM14400008	PAGE REV. A1

RECOMMENDED OPERATION CONDITIONS


Item	Symbol	Condition		Тур.	Max.	Unit
DC-Link Supply voltage	V_{D}	Applied between P-N	0	300	400	V
Control supply voltage	V_{CC}	Applied between V _{CC} - GND	13.5	15.0	16.5	V
Control supply voltage	$V_{B1S1,B2S2,B3S3}$	Applied between $V_{B1,2,3} - V_{S1,2,3}$	13.5	15.0	16.5	V
Input ON threshold voltage	$V_{CIN(ON)}$	Applied between HIN1,2,3 - GND	0 ~ 0.65		V	
Input OFF threshold voltage	$V_{CIN(OFF)}$	and LIN1,2,3 - GND	4.0 ~ 5.5			V
Supply voltage ripple	$\Delta V_{D}, \ \Delta V_{DB}$		-1	-	1	V/ μ s
Arm shoot-through blocking time	t _{dead}	(Note 6)	3	-	-	μ s
PWM Input frequency	f_{PWM}	$T_{\mathrm{C}} \leq 100^{\circ} \mathrm{C}$, $T_{\mathrm{j}} \leq 125^{\circ} \mathrm{C}$		15	-	kHz

Note 6: To prevent high and low side IGBT occurred shoot-through

MECHANICAL CHARACTERISTICS AND RATINGS

Item	Condition	Min.	Typ.	Max.	Unit
Mounting torque	Mounting screw : M4	0.98	1.18	1.37	N-m
Weight		-	75	-	g
Heat-sink flatness	(Note 7)	-100	-	50	μ m

Note 7 : Measurement point of copper heat-sink flatness

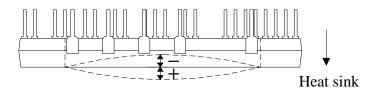


Figure.6 Measurement point of heat-sink flatness

UNLESS OTHERWISE SPECIFIED TOLERQNCES ON:		Y :	CYNTEC CO., LTD.		
$ \begin{array}{ccc} X & = \pm \\ X.X & = \pm \end{array} $	CHECKED B	Y :			
$X.XX = \pm$	APPROVED BY:		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD. AND SHALL NOT BE REPRODUCED OR USED AS THE BASIS FOR THE		
ANGLES ± HOLE DIA. ±	SCALE : X	UNIT : X	MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION		
TITLE: ENGINEERING SPEC, OF LDIP IPM 600V 30A			DOCUMENT	MM14400008	PAGE REV.
TITEE. ENGINEERING SI EC. OF EDIT IT WE OUGV SOA		NO.	1011011	A1	

Input/Output Timing Diagram

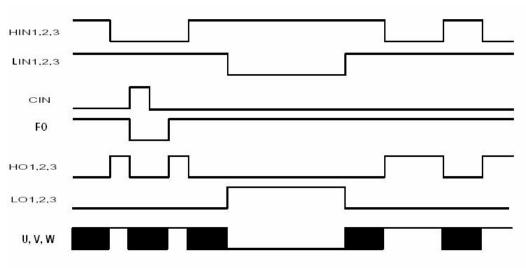


Figure.7 Input/Output Timing Diagram

Note 8: The shaded area indicates that both high-side and low-side switches are off and therefore the half-bridge output voltage would be determined by the direction of current flow in the load.

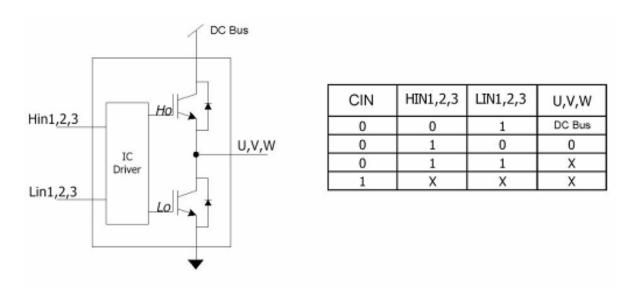


Figure.8 Input/Output signal circuit

UNLESS OTHERWISE SPECIFIED TOLERQNCES ON:	DRAWN BY		CYNTEC CO., LTD.		
X = ±	DESIGNED BY:				
$\begin{array}{ccc} \lambda & = \pm \\ X.X & = \pm \end{array}$	CHECKED BY	:			
$X.XX = \pm$	APPROVED BY:		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD. AND SHALL NOT BE REPRODUCED OR USED AS THE BASIS FOR THE		
ANGLES ± HOLE DIA. ±	SCALE : X	UNIT : X	MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION		
TITLE: ENGINEERING SPEC. OF LDIP IPM 600V 30A			DOCUMENT NO.	MM14400008	PAGE REV. A1

LDIP-IPM Short-Circuit Protection Function

- S1. Normal operation: IGBT ON and carrying current.
- S2. Short circuit current detection (SC trigger).
- S3. IGBT gate interrupt and FO signal starts.
- S4. IGBT turns OFF.
- S5. IGBT OFF state.
- S6. FO signal reset.
- S7. Normal operation.

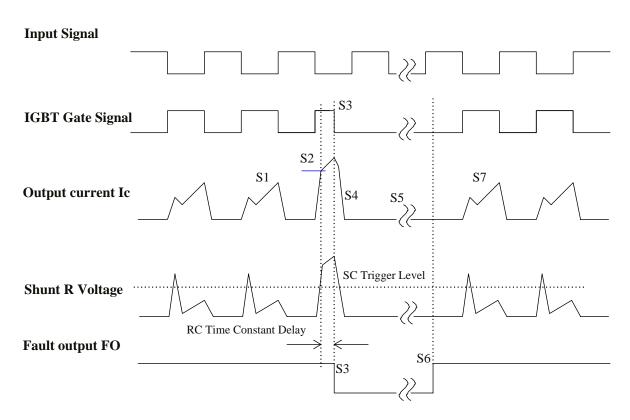


Figure.9 Timing Chart of SC Operation

UNLESS OTHERWISE SPECIFIED	DRAWN BY	:	CYNTEC CO., LTD.		
TOLERQNCES ON:	DESIGNED BY	:			
$\begin{array}{ccc} X & = \pm \\ X.X & = \pm \end{array}$	CHECKED BY	:			
$X.XX = \pm$	10000100		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD. AND SHALL NOT BE REPRODUCED OR USED AS THE BASIS FOR THE		
ANGLES ± HOLE DIA. ±	SCALE : X	UNIT : X	MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION		
TITLE: ENGINEERING SPEC, OF LDIP IPM 600V 30A			DOCUMENT	MM14400008	PAGE REV.
TITLE. ENGINEERING SPEC. OF LDIP IPM 600V 30A			l NO	10110114400000	Δ1

LDIP-IPM Under-Voltage Protection Function

- S1. Normal operation: IGBT ON and carrying current.
- S2. Under-Voltage detection.
- S3. IGBT gate interrupt.
- S4. IGBT OFF state.
- S5. Under-Voltage reset.
- S6. Normal operation.

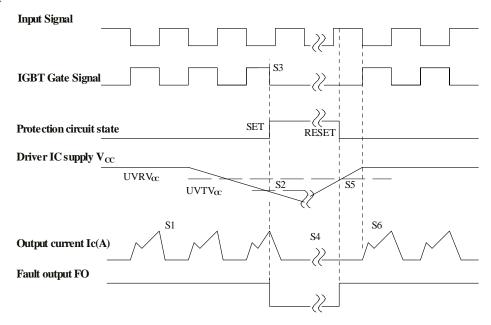
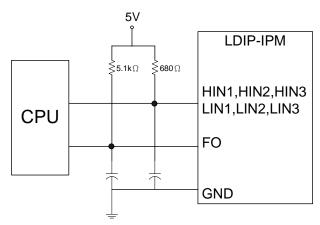
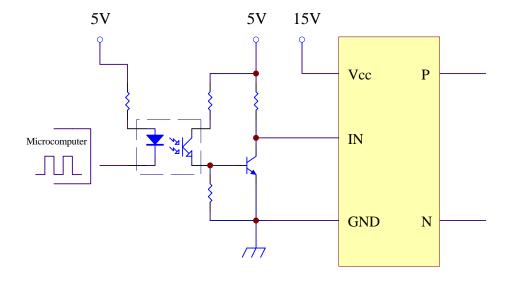


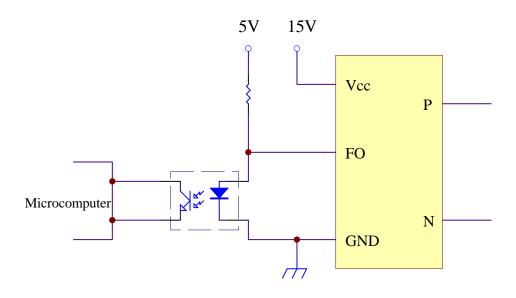
Figure.10 Timing Chart of Under-Voltage Operation

Recommended CPU I/O interface Circuit




Figure.11 I/O interface Circuit

Note 9: Depending on the wiring impedances and the PWM control circuit of the application's PCB, the RC coupling at each input may be changed.


UNLESS OTHERWISE SPECIFIED TOLERQNCES ON:		Y :	CYNTEC CO., LTD.		
$ \begin{array}{ccc} X & = \pm \\ X.X & = \pm \end{array} $	CHECKED B	Y :			
$X.XX = \pm$	APPROVED BY:		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD. AND SHALL NOT BE REPRODUCED OR USED AS THE BASIS FOR THE		
ANGLES ± HOLE DIA. ±	SCALE : X	UNIT : X	MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION		
TITLE: ENGINEERING SPEC, OF LDIP IPM 600V 30A			DOCUMENT	MM14400008	PAGE REV.
TITEE. ENGINEERING SI EC. OF EDIT IT WE OUGV SOA		NO.	1011011	A1	

Recommended circuit example when using a photo coupler

(a) IPM input pin (high-side 3-phase and low-side 3-phase)


(b) Fault output pin

Figure.12 I/O interface Circuit when using photo coupler

UNLESS OTHERWISE SPECIFIED TOLERQNCES ON:		Y: Y:	CYNTEC CO., LTD.		
$ \begin{array}{lll} X & = \pm \\ X.X & = \pm \end{array} $	CHECKED B	Υ:			
$X.XX = \pm$	APPROVED BY:		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD.		
ANGLES ± HOLE DIA. ±	SCALE : X	UNIT : X	AND SHALL NOT BE REPRODUCED OR USED AS THE BASIS FOR THE MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION		
TITLE: ENGINEERING SPEC, OF LDIP IPM 600V 30A			DOCUMENT	MM14400008	PAGE REV.
TITEE. ENGINEERING SI EC. OF EDIT IT WE GOOV SOA		NO. WWW 14400006		A1	

Direct Input (without Photo-Coupler) Interface Example

Component selection:

- 1. R1 : 5.1K Ω (FO output is open collector type. It is necessary to apply a resistor.)
- 2. R2:680Ω
- 3. R3 : 20Ω (It could be adjusted depending on the PWM frequency.)
- 4. R4 : 100Ω (Recommended the time constant R4xC4 is 2μ S.)
- 5. C1: 100 ~ 1000pF (Ceramic) (The capacitor could filter the noise, but should be careful to the dead time)
- 6. C2 : 10 ~ 100 μ F (Electrolytic, low impendence)
- 7. C3: 22nF (Ceramic)
- 8. C4: 0.02μ F (Ceramic)
- 9. C5: 0.22 ~ 2 μ F (Ceramic)
- 10. D1: 600V/1A (Ultra-Fast recovery diode)
- 11.ZD: 24V/1W Zener diode (It is recommended to insert a Zener diode to prevent surge destruction)

UNLESS OTHERWISE SPECIFIED	DRAWN BY	:	CYNTEC CO., LTD.			
TOLERQNCES ON: X = ±	DESIGNED BY	:	0 1 1 1 1	.0 001, 2101		
$\lambda = \pm X.X = \pm$	CHECKED BY	:				
$X.XX = \pm$	APPROVED BY:		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD. AND SHALL NOT BE REPRODUCED OR USED AS THE BASIS FOR THE			
ANGLES ± HOLE DIA. ±	SCALE : X	UNIT : X	MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION			
TITLE: ENGINEERING SPEC, OF LDIP IPM 600V 30A			DOCUMENT	MM14400008	PAGE REV.	
TTT LL. ENGINEERING SPEC. OF LDIP IPIN 600V 30A			NO.	1V11V1 1 4400000	A1	

Interface Example when a Photo-Coupler is used

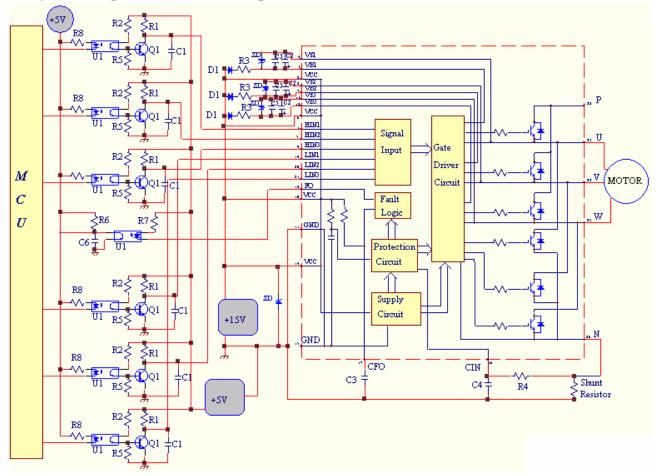


Figure.14 Typical Application Circuit Interface Example with Opto-Coupler

Component selection:

- 1. R1 : 4.7KΩ
- 2. R2: 150 Ω
- 3. R3: 20Ω (It could be adjusted depending on the PWM frequency.)
- 4. R4 : 100 Ω (Recommended the time constant R4xC4 is 2 μ S.)
- 5. R5 : $1K\Omega$
- 6. R6: $1K\Omega$
- 7. R7: $1K\Omega$
- 8. C1: 0.1 μ F
- 9. C2: $10 \sim 100 \,\mu$ F (Electrolytic, low impendence)
- 10. C3: 22nF (Ceramic)
- 11. C4: 0.02μ F (Ceramic)
- 12. C5 : 0.22 ~ 2 μ F (Ceramic)
- 13. C6: 0.1μ F
- 14. D1:600V/1A (Ultra-Fast recovery diode)
- 15. Q1: NPN transistor 2N3904
- 16. U1: Photo coupler TLP521
- 17. ZD: 24V/1W Zener diode (It is recommended to insert a Zener diode to prevent surge destruction)

UNLESS OTHERWISE SPECIFIED	DRAWN BY	:	CYNTEC CO., LTD.		
TOLERQNCES ON:	DESIGNED BY	:			
$\begin{array}{ccc} X & = \pm \\ X.X & = \pm \end{array}$	CHECKED BY	' :			
$X.XX = \pm$	APPROVED BY:		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD. AND SHALL NOT BE REPRODUCED OR USED AS THE BASIS FOR THE		
ANGLES ± HOLE DIA. ±	SCALE : X	UNIT : X		ARATUS OR DEVICES WITHOUT PER	
TITLE: ENGINEERING SPEC. OF LDIP IPM 600V 30A			DOCUMENT	MM14400008	PAGE REV.
			NO.	10110114400000	A1

Precautions on Electrostatic Electricity

- (1) Operators must wear anti-static clothing and conductive shoes (or a leg or heel strap).
- (2) Operators must wear a wrist strap grounded to earth via a resistor of about $1 M\Omega$.
- (3) Soldering irons must be grounded from iron tip to earth, and must be used only at low voltages.
- (4) If the tweezers you use are likely to touch the device terminals, use anti-static tweezers and in particular avoid metallic tweezers. If a charged device touches a low-resistance tool, rapid discharge can occur. When using vacuum tweezers, attach a conductive chucking pat to the tip, and connect it to a dedicated ground used especially for anti-static purposes (suggested resistance value: 10⁴ to 10⁸ Ω).
- (5) Do not place devices or their containers near sources of strong electrical fields (such as above a CRT).
- (6) When storing printed circuit boards which have devices mounted on them, use a board container or bag that's protected against static charge. To avoid the occurrence of static charge or discharge due to friction, keep the boards separate from one other and do not stack them directly on top of one another.
- (7) Ensure, if possible, that any articles (such as clipboards) which are brought to any location where the level of static electricity must be closely controlled are constructed of anti-static materials.
- (8) In cases where the human body comes into direct contact with a device, be sure to wear anti-static finger covers or gloves (suggested resistance value: $10^8 \Omega$ or less).
- (9) Equipment safety covers installed near devices should have resistance ratings of $10^9 \Omega$ or less.
- (10) If a wrist strap cannot be used for some reason, and there is a possibility of imparting friction to devices, use an ionizer.

UNLESS OTHERWISE SPECIFIED	DRAWN BY	' :	CYNTE	EC CO., LTD.		
TOLERQNCES ON: X = ±	DESIGNED BY:		J 1111 20 001, 2131			
$X = \pm X$	CHECKED BY	Y :				
$X.XX = \pm$	15550/55		THIS DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF CYNTEC CO., LTD. AND SHALL NOT BE REPRODUCED OR USED AS THE BASIS FOR THE			
ANGLES ± HOLE DIA. ±	SCALE : X	UNIT : X	MANUFACTURE OR SALE OF APPARATUS OR DEVICES WITHOUT PERMISSION			
TITLE: ENGINEERING SPEC. OF LDIP IPM 600V 30A			DOCUMENT	MM14400008	PAGE REV.	
			l NO.	WIW 14400006	A1	