
IGBT

Features

- 1200V,20A,V_{CE(sat)(typ.)}=2.1V@V_{GE}=15V, 20A
- High speed switching
- Higher system efficiency
- Soft current turn-off waveforms
- Square RBSOA using NPT technology

General Description

KEDA NPT IGBTs offer lower losses and higher energy efficiency for application such as IH (induction heating),UPS, general inverter and other soft switching applications.

Absolute Maximum Ratings

Symbol	Parameter	Value	Units
V _{CES}	Collector-Emitter Voltage	1200	V
V _{GES}	Gate-Emitter Voltage	<u>+</u> 30	V
	Continuous Collector Current (T _c =25 °C)	40	A
I _C	Continuous Collector Current (T _c =100°C)	20	A
I _{CM}	Pulsed Collector Current (Note 1)	190	A
I _F	Diode Continuous Forward Current (T _c =100 °C)	15	A
I _{FM}	Diode Maximum Forward Current (Note 1)	190	А
t _{sc}	Short Circuit Withstand Time	10	us
	Maximum Power Dissipation (T _c =25 °C)	192	W
P _D	Maximum Power Dissipation (T _c =100°C)	76	W
TJ	Operating Junction Temperature Range	-55 to +150	°C
T _{STG}	Storage Temperature Range	-55 to +150	С°

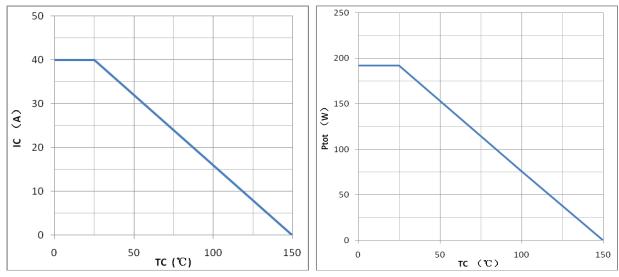
Thermal Characteristics

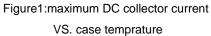
Symbol	Parameter	Max.	Units
R _{th j-c}	R _{th j-c} Thermal Resistance, Junction to case for IGBT		°C/W
R _{th j-c}	R _{th j-c} Thermal Resistance, Junction to case for Diode		°C/W
R _{th j-a}	Thermal Resistance, Junction to Ambient	40	°C/W

Electrical Characteristics (Tc=25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{CES}	Collector-Emitter Breakdown Voltage	V _{GE} = 0V, I _C = 250uA	1200	-	-	V
I _{CES}	Collector-Emitter Leakage Current	V _{CE} = 1200V, V _{GE} = 0V	-	-	250	uA
	Gate Leakage Current, Forward	V_{GE} =30V, V_{CE} = 0V	-	-	100	nA
GES	Gate Leakage Current, Reverse	V_{GE} = -30V, V_{CE} = 0V	-	-	-100	nA
V _{GE(th)}	Gate Threshold Voltage	$V_{GE} = V_{CE}, I_C = 250 \text{uA}$	4.5	-	5.5	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	V _{GE} =15V, I _C = 20A	-	2.1	2.3	V
Qg	Total Gate Charge	V _{cc} =960V	-	120	140	nC
Qge	Gate-Emitter Charge	V _{GE} =15V	-	30	50	nC
Q _{gc}	Gate-Collector Charge	I _C =20A	-	60	80	nC
t _{d(on)}	Turn-on Delay Time		-	40	-	ns
t _r	Turn-on Rise Time	$V_{CC}=600V$ $V_{GE}=15V$ $I_{C}=20A$ $R_{G}=28\Omega$ Inductive Load $T_{C}=25\ ^{\circ}C$	-	50	-	ns
t _{d(off)}	Turn-off Delay Time		-	450	-	ns
t _f	Turn-off Fall Time		-	100	-	ns
Eon	Turn-on Switching Loss		-	1.5	-	mJ
Eoff	Turn-off Switching Loss		-	1.2	-	mJ
Ets	Total Switching Loss		-	2.7	-	mJ
Cies	Input Capacitance	V _{CF} =25V	-	540	-	pF
Coes	Output Capacitance	V _{GE} =0V	-	135	-	pF
C _{res}	Reverse Transfer Capacitance	f = 100kHz	-	77	-	pF
R _{Gint}	Integrated gate resistor		1.8	1.9	2.0	Ω

Electrical Characteristics of Diode (Tc=25°C unless otherwise noted)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V _F	Diode Forward Voltage	I _F =15A	1.8	-	2.4	V
t _{rr}	Diode Reverse Recovery Time	V _{CE} = 600V	-	110		ns
l _{rr}	Diode peak Reverse Recovery Current	I _F = 15A	-	16		Α
Q _{r r}	Diode Reverse Recovery Charge	dI _F /dt = 500A/us	-	1060		nC


Notes:

1. Repetitive Rating: Pulse width limited by maximum junction temperature

Typical Performance Characteristics

Figure2:power dissipation VS. case temprature

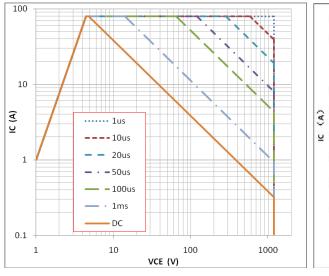
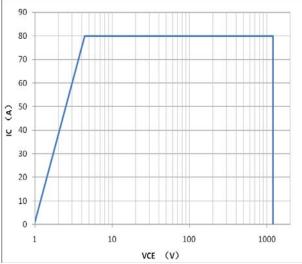



Figure3:forward SOA,TC=25 $^\circ\!\!\mathrm{C}$,TJ \leqslant 150 $^\circ\!\!\mathrm{C}$

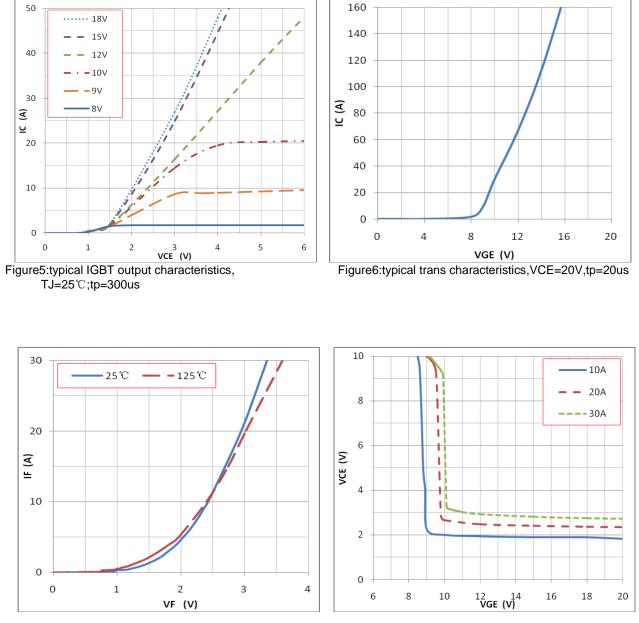


Figure7:typical diode forward characteristic,tp=300us

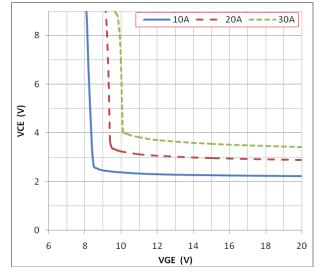


Figure9: typical VCE VS. VGE,TJ=125°C

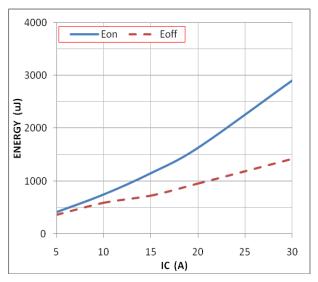


Figure10: typical energy loss VS. IC, TC=25°C,L=500uH,

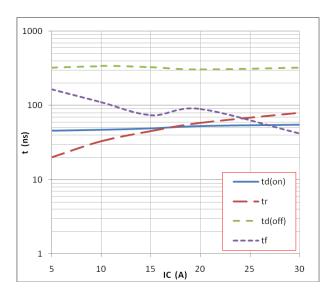


Figure11: typical switching time VS. IC, TC=25°C,

L=500uH, VCE=600V,VGE=15V,Rg=28 Ω

VCE=600V,VGE=15V,Rg=28Ω

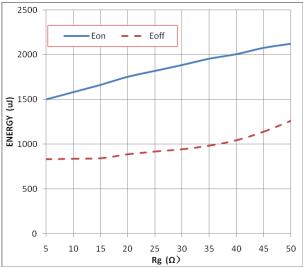


Figure 12: typical energy loss VS. Rg,TC=25°C,

L=500uH,VCE=600V,VGE=15V,IC=20A

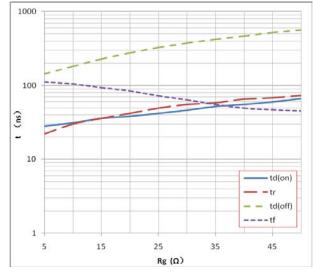
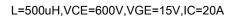



Figure13: typical switching time VS. Rg,TC=25°C,

30

25

20

15

10

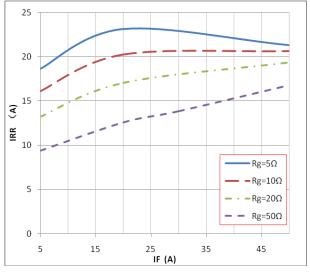
5

0

250

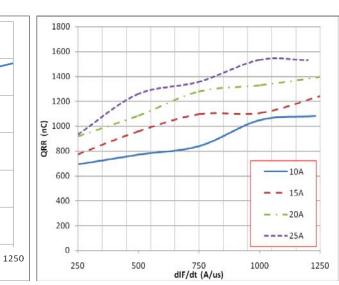
500

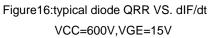
Figure15:typical diode IRR VS. dIF/dt


VCC=600V,VGE=15V,IF=20A

750

dIF/dt (A/us)


1000


IRR (A)

VCC=600V,VGE=15V

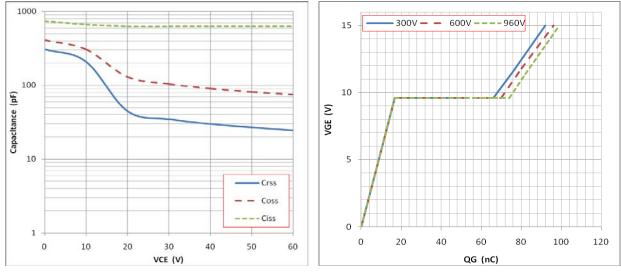


Figure17:typical capacitance VS. VCE, VGE=0V, f=100kHz

Figure18:typical gate charge VS. VGE,IC=20A

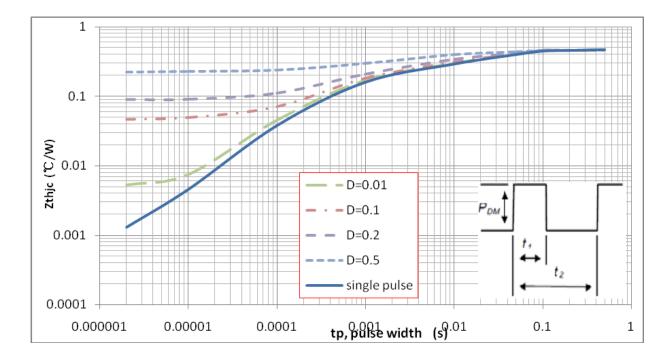
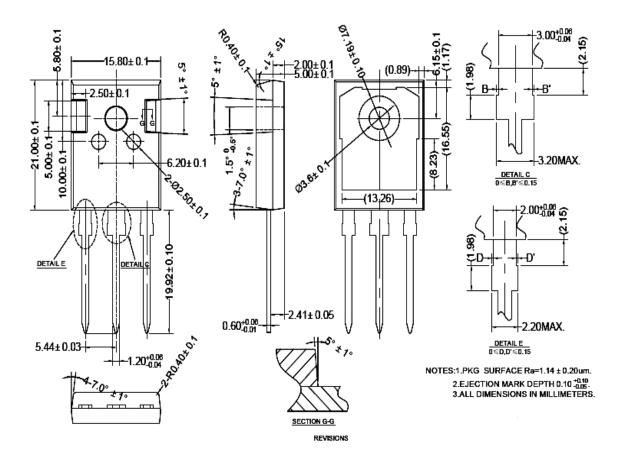



Figure19:normalized transient trermal impedance, junction-to-case

Note1.Duty factor D=t1/t2; Note2:peak TJ=PDM×Zthjc+TC

TO247 PACKAGE OUTLINE

会差标注	公差值	表面粗糙度
0	±0.2	Ra3.2~6.3
0.0	±0.1	Ra1.6~3.2
0.00	±0.01	Ra0.8~1.6
0.000	±0.005	Ra0.4~0.8
0.0000	±0.002	Ra0.2~0.4

0≤D,D'≤0.15

NOTES:1.PKG_SURFACE Ra=1.14 ± 0.20um. 2.EJECTION MARK DEPTH 0.10 +0.10 -0.05 3.ALL DIMENSIONS IN MILLIMETERS.

Disclaimers

KEDA Semiconductor Co., Ltd reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to KEDA's terms and conditions supplied at the time of order acknowledgement.

KEDA Semiconductor Co., Ltd warrants performance of its hardware products to the specifications at the time of sale, Testing, reliability and quality control are used to the extent KEDA deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

KEDA Semiconductor Co., Ltd does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using KEDA's components. To minimize risk, customers must provide adequate design and operating safeguards.

KEDA Semiconductor Co., Ltd does not warrant or convey any license either expressed or implied under its parent rights, nor the rights of others. Reproduction of information in KEDA's datasheets or data books sis permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. KEDA Semiconductor Co., Ltd is not responsible or liable for such altered documentation.

Resale of KEDA's products with statements different from or beyond the parameters stated by KEDA Semiconductor Co., Ltd for that product or service voids all express or implied warrantees for the associated KEDA's product or service and is unfair and deceptive business practice. KEDA Semiconductor Co., Ltd is not responsible or liable for any such statements.