# **SKM 75GD123D**

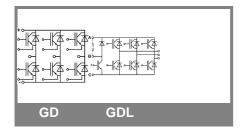


SEMITRANS<sup>TM</sup> 3

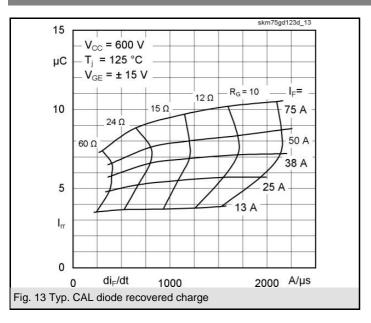
### Trench IGBT Modules

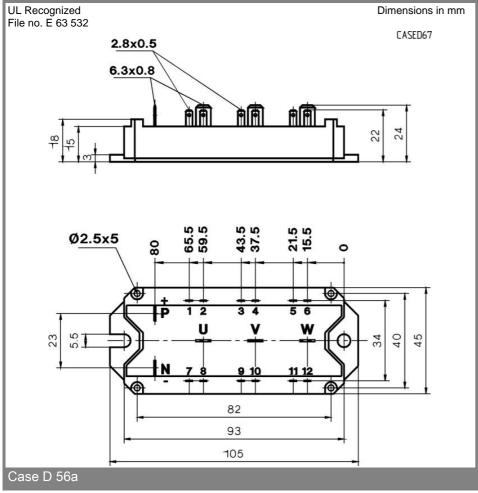
SKM 75GD123DL SKM 75GD123D SKM 75GDL123D

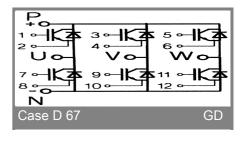
#### **Features**

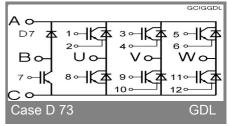

- MOS input (voltage controlled)
- N channel, homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, selt limiting to 6 x I<sub>cnom</sub>
- · Latch-up free
- Fast & soft inverse Cal diodes
- Isolated copper baseplate using DCB Direct Bonding Technology
- Large clearance (9 mm) and creepage distance (13 mm)

### **Typical Applications**


- Switched mode power supplies
- DC servo and robot drives
- Three phase inverters for AC motor speed control
- Switching (not for linear use)


| Absolute                           | Maximum Ratings                                    | T <sub>c</sub> = 25 °C, unless otherwise specified |       |  |  |  |  |  |
|------------------------------------|----------------------------------------------------|----------------------------------------------------|-------|--|--|--|--|--|
| Symbol                             | Conditions                                         | Values                                             | Units |  |  |  |  |  |
| IGBT                               |                                                    |                                                    |       |  |  |  |  |  |
| $V_{CES}$                          |                                                    | 1200                                               | V     |  |  |  |  |  |
| V <sub>CES</sub><br>I <sub>C</sub> | T <sub>c</sub> = 25 (80) °C                        | 75 (50)                                            | Α     |  |  |  |  |  |
| I <sub>CRM</sub>                   | t <sub>p</sub> = 1 ms                              | 100                                                | Α     |  |  |  |  |  |
| $V_{GES}$                          |                                                    | ± 20                                               | V     |  |  |  |  |  |
| $T_{vj}$ , $(T_{stg})$             | $T_{OPERATION} \leq T_{stg}$                       | - 40 + 150 (125)                                   | °C    |  |  |  |  |  |
| V <sub>isol</sub>                  | AC, 1 min.                                         | 2500                                               | V     |  |  |  |  |  |
| Inverse diode                      |                                                    |                                                    |       |  |  |  |  |  |
| I <sub>F</sub>                     | T <sub>c</sub> = 25 (80) °C                        | 75 (50)                                            | Α     |  |  |  |  |  |
| I <sub>FRM</sub>                   | $t_p = 1 \text{ ms}$                               | 100                                                | Α     |  |  |  |  |  |
| I <sub>FSM</sub>                   | $t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$ | 550                                                | Α     |  |  |  |  |  |


| Characte                        | ristics T                                                    | c = 25 °C, unless otherwise specified |           |           |       |
|---------------------------------|--------------------------------------------------------------|---------------------------------------|-----------|-----------|-------|
| Symbol                          | Conditions                                                   | min.                                  | typ.      | max.      | Units |
| IGBT                            |                                                              |                                       |           |           |       |
| $V_{GE(th)}$                    | $V_{GE} = V_{CE}$ , $I_C = 2 \text{ mA}$                     | 4,5                                   | 5,5       | 6,5       | V     |
| I <sub>CES</sub>                | $V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$            |                                       | 0,4       | 1,2       | mA    |
| $V_{CE(TO)}$                    | T <sub>j</sub> = 25 (125) °C                                 |                                       | 1,4 (1,6) | 1,6 (1,8) | V     |
| $r_{CE}$                        | V <sub>GE</sub> = 15 V, T <sub>j</sub> = 25 (125) °C         |                                       | 22 (30)   | 28 (38)   | mΩ    |
| V <sub>CE(sat)</sub>            | $I_{Cnom}$ = 50 A, $V_{GE}$ = 15 V, chip level               |                                       | 2,5 (3,1) | 3 (3,7)   | V     |
| C <sub>ies</sub>                | under following conditions                                   |                                       | 3,3       | 4,3       | nF    |
| C <sub>oes</sub>                | $V_{GE} = 0$ , $V_{CE} = 25 \text{ V}$ , $f = 1 \text{ MHz}$ |                                       | 0,5       | 0,6       | nF    |
| C <sub>res</sub>                |                                                              |                                       | 0,22      | 0,3       | nF    |
| L <sub>CE</sub>                 |                                                              |                                       |           | 60        | nH    |
| R <sub>CC'+EE'</sub>            | res., terminal-chip T <sub>c</sub> = 25 (125) °C             |                                       |           |           | mΩ    |
| t <sub>d(on)</sub>              | V <sub>CC</sub> = 600 V, I <sub>Cnom</sub> = 50 A            |                                       | 44        | 100       | ns    |
| t <sub>r</sub>                  | $R_{Gon} = R_{Goff} = 22 \Omega, T_j = 125 °C$               |                                       | 56        | 100       | ns    |
| $t_{d(off)}$                    | V <sub>GE</sub> = ± 15 V                                     |                                       | 380       | 500       | ns    |
| t <sub>f</sub>                  |                                                              |                                       | 70        | 100       | ns    |
| $E_{on} \left( E_{off} \right)$ |                                                              |                                       | 8 (5)     |           | mJ    |
| Inverse d                       | iode                                                         |                                       |           |           |       |
| $V_F = V_{EC}$                  | $I_{Fnom}$ = 50 A; $V_{GE}$ = 0 V; $T_i$ = 25 (125) °C       |                                       | 2 (1,8)   | 2,5       | V     |
| $V_{(TO)}$                      | T <sub>j</sub> = 25 (125) °C                                 |                                       | 1,1       | 1,2       | V     |
| $r_T$                           | T <sub>j</sub> = 25 (125) °C                                 |                                       | 18        | 22        | mΩ    |
| I <sub>RRM</sub>                | $I_{Fnom} = 50 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$   |                                       | 23 (35)   |           | Α     |
| $Q_{rr}$                        | di/dt = 800 A/μs                                             |                                       | 2,3 (7)   |           | μC    |
| E <sub>rr</sub>                 | V <sub>GE</sub> = V                                          |                                       |           |           | mJ    |
| Thermal of                      | characteristics                                              |                                       |           |           |       |
| $R_{th(j-c)}$                   | per IGBT                                                     |                                       |           | 0,32      | K/W   |
| R <sub>th(j-c)D</sub>           | per Inverse Diode                                            |                                       |           | 0,6       | K/W   |
| R <sub>th(c-s)</sub>            | per module                                                   |                                       |           | 0,05      | K/W   |
| Mechanic                        | al data                                                      |                                       |           |           |       |
| $M_s$                           | to heatsink M5                                               |                                       |           |           | Nm    |
| $M_t$                           | to terminals                                                 | 4                                     |           | 5         | Nm    |
| W                               |                                                              |                                       |           | 175       | g     |




# **SKM 75GD123D**









This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.