

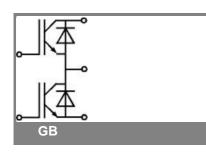
SEMITOP[®] 3

IGBT Module

SK60GB128

Preliminary Data

Features


- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- High short circuit capabilit
- SPT= Soft-Punch-Through technology
- V_{ce,sat} with positive coefficient

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

	Maximum Ratings	's	25 °C, unless otherwise	
Symbol	Conditions	Values	Units	
IGBT				
V _{CES}	T _j = 25 °C		1200	V
Ι _C	T _j = 125 °C	T _s = 25 °C	63	А
		T _s = 80 °C	44	А
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		100	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs
Inverse D	liode			
I _F	T _j = 150 °C	T _s = 25 °C	57	A
		T _s = 80 °C	38	А
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			А
I _{FSM}	$t_p = 10 \text{ ms}; \text{ half sine wave}$	T _j = 150 °C	550	А
Module			_	
I _{t(RMS)}				А
T _{vj}			-40 +150	°C
T _{stg}			-40 +125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 2 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,1	mA	
		T _j = 125 °C		0,2		mA	
I _{GES}	V_{CE} = 0 V, V_{GE} = 20 V	T _j = 25 °C			200	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1,1	1,3	V	
		T _j = 125 °C		1	1,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		16		mΩ	
		T _j = 125°C		18		mΩ	
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V		1,7	1,9	2,3	V	
		T _j = 125°C _{chiplev.}		1,9	2,3	V	
Cies				4,46		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,33		nF	
C _{res}				0,21		nF	
t _{d(on)}				80		ns	
t, F	R _{Gon} = 15 Ω	$V_{\rm CC} = 600V$		50		ns	
E _{on}	R _{Goff} = 15 Ω	I _{Cnom} = 50A T _i = 125 °C		5,8 420		mJ	
t _{d(off)} t _f	Goff - 13 52	V _{GE} =±15V		420		ns ns	
e E _{off}		GE - CO		4,8		mJ	
	per IGBT	1		.,•	0,6	K/W	
R _{th(j-s)}					0,0	1.7.17	

SEMITOP[®] 3

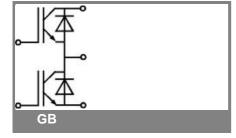
IGBT Module

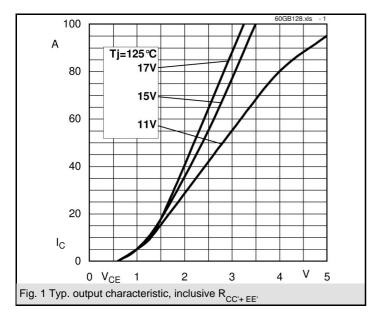
SK60GB128

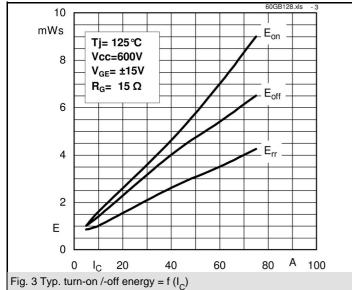
Preliminary Data

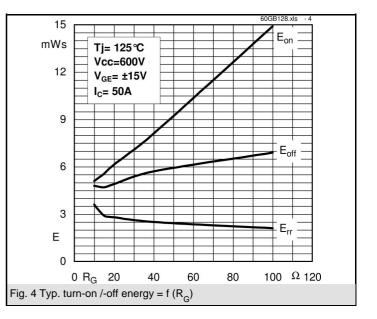
Features

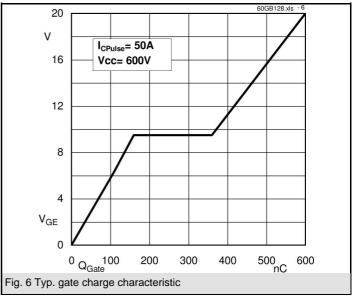
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- High short circuit capabilit
- SPT= Soft-Punch-Through technology
- V_{ce,sat} with positive coefficient


Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D	ode						
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V	
		T _j = 125 °C _{chiplev.}		1,8	2,3	V	
V _{F0}		T _j = 125 °C		1	1,2	V	
r _F		T _j = 125 °C		18	22	mΩ	
I _{RRM}	I _{Fnom} = 50 A	T _i = 125 °C		40		Α	
Q _{rr}	di/dt = -800 A/µs	,		8		μC	
E _{rr}	V _{CC} = 600V			2		mJ	
R _{th(j-s)D}	per diode				0,9	K/W	
M _s	to heat sink M1		2,25		2,5	Nm	
w				29		g	


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

